Chairman	Kalogeras A.
Topic	Fault Detection and Diagnosis in Cyber-physical and Industrial Systems
Objectives	Advances in information and communication technologies, embedded
	systems and sensor networks have greatly influenced industrial systems
	and cyber-physical systems. The increasing use of sensors of all kinds
	creates huge amounts of data that have to be handled, so that
	reliability is ascertained and system dependability is guaranteed.
	Failures may lead to significant damage both from the economic point
	of view and influence well-being of citizens, especially in the case of
	control of critical infrastructures. Fault detection and diagnosis
	mechanisms are thus mandatory.
	The session themes include, but are not limited to, the following:
	- Process and fault modelling
	- Model-free fault detection
	- Model-based fault detection: parameter estimation, observers,
	parity equations, signal models
	- Fault diagnosis: classification and inference
	- Data-driven Fault Detection and Diagnosis
	 Applications of fault detection and diagnosis techniques